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Abstract-In this paper, a numerical simulation is presented for the transient forced convection in the 
developing region of a cylindrical channel partially filled with a porous substrate. The porous substrate is 
attached to the inner side of the cylinder wall, which is exposed to a sudden change in temperature. The 
flow within the porous domain is modeled by the Brinkman-Forchheimer-extended Darcy model. The 
effects of several parameters on the hydrodynamic and thermal characteristics of the present problem are 
studied. These parameters include the porous substrate thickness, Darcy number and Forchheimer 
coefficient. Results of the current model show that the existence of the porous substrate may improve the 
Nusselt number at the fully developed region by a factor of 8. However, there is an optimum thickness of 
the porous substrate beyond which no significant improvement in the Nusselt number is achieved. Also, in 
the present work, the macroscopic inertial term in the porous domain momentum equation is included due 
to its significant effect. It is found that the steady state time increases as the substrate thickness increases 
up to a certain limit and then the steady state time decreases upon further increase in the substrate thickness. 
Also, increasing the Forchheimer coefficient and decreasing the Darcy number increase the steady state 

time. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Convective heat transfer in channels partially filled with 
porous media has gained considerable attention in 
recent years becau!;e of its various applications in con- 
temporary technology [ 11. These applications include : 
porous journal bearing, blood flow in lungs or in arter- 
ies, nuclear reactors, porous-flat plate collectors, 
packed bed them:al storage, solidification of con- 
centrated alloys, fibrous and granular insulation, grain 
storage and drying, paper drying, and food storage. 
Besides, the use of porous substrates to improve forced 
convection heat transfer in channels, which is con- 
sidered as a composite of fluid and porous layers, finds 
applications in heat exchangers, electronic cooling, heat 
pipes, filtration and chemical reactors, etc. In these 
applications, engineers avoid filling the entire channel 
with a solid matrix to reduce the pressure drop. 

Previous work on forced convection in composite 
fluid and porous layers is limited [2]. Using the simple 
Darcy model, the fluid mechanics at the interface 
between a fluid layer and a porous medium over a flat 
plate was first investigated by Beavers and Joseph [3]. 
Later, this problem was investigated by Vafai and 
Thiyagaraja [4] analytically. In their work, Vafai and 
Thiyagaraja obtai-ned an approximate solution based 
on matched asym.ptotic expansions for the velocity 
and temperature distributions. In the work of Vafai 
and Thiyagaraja, the empirically-based correlation, 
used by Beavers and Joseph, was shown to be true 

t Author to whom correspondence should be addressed. 

for the linear regime which Beavers and Joseph had 
investigated. This correlation was verified by the 
development of an analytical model based on first 
principles, thereby showing that an extra matching 
condition is not needed. Vafai and Kim [2] presented 
an exact solution for the same problem. Excluding 
the microscopic (the Forchheimer or the microflow 
development) inertial term, closed form analytical 
solutions for parallel plates and circular pipes partially 
filled with porous materials were obtained by Pou- 
likakos and Kazmierczak [5] for constant wall heat 
flux, while numerical results were computed for con- 
stant wall temperature. Jang and Chen [6] investigated 
the problem of forced convection in a parallel plate 
channel partially filled with a porous material numeri- 
cally. In their work, Jang and Chen used the Darcy- 
Brinkman-Forchheimer .model to describe the flow 
within the porous material. Also, they assumed a fully 
developed hydrodynamic behavior by excluding the 
macroscopic (or the macroflow development) inertial 
term and a steady state thermal behavior was 
considered. Rudraiah [7] applied different boundary 
conditions to the same problem using the Darcy- 
Brinkman model. Analytical solution was obtained by 
Chikh et al. [8] for the problem of forced convection 
under fully-developed hydrodynamic and steady ther- 
mal behavior in an annular duct partially filled with a 
porous medium. One of the annulus walls was exposed 
to isoflux and the other wall was insulated. The same 
problem, but with an isothermal boundary condition, 
was investigated numerically by the same group [9] 
using the Darcy-Brinkman-Forchheimer model. 
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coefficient of the microscopic inertia 
term, c&/P& 
specific heat 
heat capacity ratio, 
P*c*/P,c, = e+ (l -4PsGlPfcf 
Darcy number, K/r: 
Forchheimer coefficient, 1.8/( 180~‘)~,~ 
thermal conductivity 
thermal conductivity ratio, k,/k, 
permeability of the porous substrate 
dimensionless radius ratio, r,/r2 
= 1 dimensionless radius ratio, 
r2/r2 = 1 
local Nusselt number, 

hr2/k, = z/(0,,, - 1) 

pressure 
dimensionless pressure, pr:/p, VT 
Prandtl number of the fluid, c,p,/k, 
radial coordinate 
interface and outer radii of annulus 
dimensionless radial coordinate, r/r2 
time 
steady state time 
temperature at any point 
initial temperature 
mixing cup temperature over any cross 
section (& rtl, T, dr + j: ru2 T2 dr)/ 
(J3 ruI dr + j; ru2 dr) 
temperature of heat transfer boundary 
axial velocity 
inlet axial velocity 
dimensionless volume averaged axial 
velocity, ur,/v, 

UO dimensionless inlet axial velocity, z+,r2/v, 
V radial velocity 
V dimensionless radial velocity, vr2/v, 
Z axial coordinate 
Z,” hydrodynamic entrance length 
Z dimensionless axial coordinate, z/r2 

Z” dimensionless hydrodynamic entrance 
length, z,,/r2. 

Greek symbols 
porosity 
dimensionless temperature 
(T- T,)/(To- Ti) 
dimensionless mixing cup temperature 
(T,- T,)/(To- Ti) 
dynamic viscosity 
effective dynamic viscosity of the 
porous domain 
dynamic viscosity ratio, p2/p, 
kinematic viscosity 
kinematic viscosity ratio, v2/v, 
density 
density ratio, p2/p, 
dimensionless time, tv, /rz 
dimensionless steady state time, 
Lv,/r:. 

Subscripts 
1 or f fluid domain properties 
2 porous domain properties 
R ratio 
S solid matrix properties 
ss steady state. 

The investigations cited above are concerned with 
steady state forced convection problems in different 
composite geometries. All the models presented by 
these investigations drop the macroscopic inertial 
force from the momentum governing equations 
according to the assumption of fully developed hydro- 
dynamics. However, and as reported by Vafai and 
Kim [lo], and Al-Nimr and Alkam [ll], the macro- 
scopic inertial term has significant effects especially on 
the thermal behavior in channels partially filled with 
porous material. Including the macroscopic inertial 
term in the governing equations is essential to ensure 
the matching between the flow development in the 
clear fluid and in the fluid-saturated porous layer. 

In the present work, the transient forced convection 
in circular channels partially filled with porous 
materials is numerically simulated. The transient 
behavior in the thermal field is caused by a step tem- 
perature change at the cylinder wall. The hyd- 
rodynamic flow characteristics are assumed to be 

steady, but in developing situations. The interactions 
between the porous medium and the clear fluid is 
simulated by the Darcy-Brinkman-Forchheimer for- 
mulation and the continuity of velocity and stresses 
at the interface [lo]. The effects of several parameters, 
such as the porous layer thickness, the system con- 
figuration, Forchheimer coefficient, and Darcy num- 
ber are investigated. The study includes the effect of 
these parameters on the transient thermal behavior of 
the channel under consideration. 

MATHEMATKXL FORMULATION 

The physical problem under consideration consists 
of a circular cylinder as shown in Fig. 1. A porous 
substrate is deposited at the cylinder wall. The heating 
(or cooling) process is in the form of a sudden change 
in the boundary-temperature. Both the fluid and the 
solid matrix have constant physical properties, and 
the fluid enters the circular passage with a uniform 
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Fig. 1. Schematic diagram of the problem under consideration. 

velocity distribution, a,,, which is independent of time. 
Prior to the start of the time varying heating (or cool- 
ing) process, the fluid may either be in a thermal 
steady-state as a result of some steady heating process, 
or alternatively, the fluid and the channel wall may be 
at the same uniform temperature. The transient forced 
convection proces#s starts by imposing (at r > 0) a 
sudden change in the temperature of the cylinder wall. 

The current investigation has been carried out 
assuming axisymmetric, laminar, boundary-layer flow 
with no internal h.eat generation, and neglecting vis- 
cous dissipation and axial conduction of heat. Also, 
it is assumed that the porous medium is homogeneous, 
isotropic and saturated with a single-phase. The fluid 
is in local thermal equilibrium with the solid matrix. 
Using the dimensionless parameters given in the 
nomenclature, the equations of continuity, motion, 
and energy, for both fluid and porous domains, reduce 
to the following non-dimensional equations, respec- 
tively 

(6) 

In equations (l)-(6), subscripts 1 and 2 refer to the 
clear fluid and porous substrate, respectively. It 
should be pointed out that it is uncertain what one 
should use for the effective viscosity ratio pR,+. 
Although the suitable value of pR,e is far from being 
settled, the viscosity ratio is taken as either unity or 
l/e in the heat transfer literature [l]. In fact, pR,c = 1 
is a good approximation in the range 0.7 < E < 1. For 
lower porosity, the use of the Einstein equation [13] 
for the viscosity of dilute suspension leads to a value 
of effective viscosity greater than the fluid viscosity. 
Also, it is noteworthy that the radial momentum equa- 
tion has been eliminated due to the boundary-layer 
simplifications. However, it is possible, under the lin- 
earized numerical scheme of Bodoia and Osterle [ 121, 
to compensate for the lack of such an equation by 
using the following dimensionless integral continuity 
equation : 

joN’ U,RdR+/+, U,RdR = :. (7) 

In the case under consideration, the momentum equa- 
tions assume the following boundary conditions : 
atZ=OandO<Rcl 

U, = U2 = U,, and V, = V, = 0 

for Z > 0 and R = 1 

u2 = v, = 0 

(8) 

for Z > 0 and R = 0 
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au, -=O 
aR 

for Z > 0 and R = N, 

The energy equations have the following initial con- 
ditions : 

atz = 0 0, = t& = 0. (9) 

For z > 0, the thermal boundary conditions for the 
considered case are : 
atR=O 

(10) 

and at R = 1 

672 = 1. 

The thermal conditions at the duct inlet and at the 
interface between the fluid and the porous domains 
are : 
atZ=O, O<R<l 

8, =6$ =o 

at Z > 0, R = N, 

0 =&I I 2 
and f!!-=k !!& 

aR RaR. (11) 

NUMERICAL METHOD OF SOLUTION 

In the present work, there are three independent 
variables: R, Z and z. A three-dimensional parallel 
piped grid in R, Z and r has been imposed on half of 
the cylindrical flow field due to symmetry about the 
Z-axis. The non-dimensional time, z, is simulated as 
a third coordinate, normal to the R-Z plane. The 
linearized implicit finite difference equations are 
derived using second-order central difference scheme 
for the radial derivatives, and first-order backward 
scheme for both the axial and time derivatives. The 
consistency and stability of the discretized governing 
equations have been checked, and it is found that the 
derived forms are consistent and stable as long as 
the downstream axial velocities U, and U, are non- 
negative, i.e. there is no flow reversal within the 
domain of the solution. 

The method discussed by Bodoia and Osterle [12, 
141 is used to solve the finite difference equations that 
simulate the flow hydrodynamics at steady state con- 
ditions. Having obtained the values of U,, U,, VI and 
V, over the flow field, the discretized energy equations 
are solved by marching in time. The solution pro- 
cedure in time is carried out until steady-state con- 
ditions are practically achieved. The steady-state con- 
ditions are declared when the summation of the 
residue over the cross-section reaches a value less than 

1 x 10e4. The residue is defined as the absolute differ- 
ence in temperature between a grid point and the 
previous one in time direction. 

In order to obtain a solution independent of the 
grid size, several runs were performed to obtain the 
optimum step sizes in R, Z and r directions. The 
optimization of the grid size includes computing the 
radial temperature distribution at an arbitrary 
location, employing a given number of grid points in 
both the radial and axial directions. After that the 
number of grid points is increased gradually, and each 
time, a computer run is performed to compute the 
temperature profiles. A residue is defined as the absol- 
ute difference in temperature between the computed 
temperature distribution and the one obtained in the 
previous run. The procedure is continued until the 
residue approaches a value less than 1 x 10m4. At this 
point the spatial grid size is fixed. Similar procedure 
is followed to choose the optimum time step. The 
optimum choice was AR = 0.02, AZ = 0.1, and 
AZ = 0.01. 

RESULTS AND DISCUSSION 

The computations are carried out for the following 
typical values of the flow and geometry parameters : 

Pr, =0.7,kR=5,~,=1,pR=2,cR=l,U0=100. 

In order to validate the present code, a special com- 
puter run was made in which Da + a, A + 0 and N--f 
1. These operating conditions represent the flow of a 

fluid in a clear tube. The obtained fully developed 
axial velocity distribution and the results are shown 
in Fig. 2. The difference between the obtained numeri- 
cal and analytical results is insignificant. 

Figure 3 shows the axial velocity distribution in the 
radial direction at different axial locations Z. This 
figure shows that the mean fluid velocity in the porous 
domain is lower than that in the clear domain. This is 
due to the additional retardation of the flow caused 
by the microscopic inertial and viscous forces gen- 
erated by the porous solid matrix. Also, the fluid mean 
velocity in the porous domain decreases as one mar- 
ches downstream. The drafted fluid from the porous 
region enhances the fluid flow in the clear domain and 
causes an increase in its average maximum velocity. 

Figure 4 shows the dynamic variation in the radial 
temperature distribution. The figure suggests that 
external heating, which is applied on the cylinder 
boundary, has more effective penetration in the 
porous substrate than that in the clear fluid domain. 
This is due to the improvement in Nusselt number as 
will be shown later. 

The effect of the porous substrate thickness on the 
axial variation of Nu number is shown in Fig. 5. As 
shown from this figure, increasing the substrate thick- 
ness improves the fully developed Nu number up to 8 
times. The effect of the porous substrate thickness on 
the fully developed Nu under steady state conditions, 
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Fig. 3. Axial velocity distribution in the radial direction at different axial locations. A = 1 .O and Da = 0.01. 

is shown in Fig. 6. Increasing the porous substrate 
thickness (decreasing N,) causes a substantial increase 
in Nu especially at higher values of A. The improve- 
ment in Nu due to the porous substrate is caused 
by : (1) the substrate role in enhancing the mixing 
mechanism between the fluid and the wall, (2) increas- 
ing the fluid e&ctive thermal conductivity, and (3) 
producing a thinner hydrodynamic boundary layer 
(low thermal resistance). The results of Fig. 6 are 
replotted from another point of view in Fig. 7. It is 

shown that A, in the considered range, has no sig- 
nificant effects on Nu for the entire range of the sub- 
strate thickness. 

The effect of Da number on Nu number and for 
different substrate thicknesses is shown in Fig. 8. For 
large Da number, increasing the porous substrate 
thickness increases Nu number as mentioned 
previously. However, for very small Da numbers, 
increasing the porous substrate thickness leads to a 
small reduction in Nu number. Very small Da numbers 
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Fig. 5. axial variation of Nusselt number at steady-state conditions. Da = 0.01 and A = 1. 

implies substrates of small permeability. This means before and beyond which the variation in NU number 
that the substrate behaves nearly as a complete solid is insignificant. As clear from the porous domain 
layer which does not contain any voids. In this case momentum equation, the momentum equation does 
increasing the substrate thickness increases the ther- not recognize variations in large values of Da 
mal insulation and reduces the Nu number. Also, Fig. numbers. Also, very small Da numbers imply that 
8 shows that Da number has insignificant effect on Nu substrates contain a complete solid, with no or with 
number for substrates of small thicknesses. In the limit small voids, and as a result, U, z 0. Very small vel- 
N, --t 1, the system does not recognize the existence of ocities eliminate the effect of Da number. In this limit, 
a very small substrate thickness. Also, it is clear from small vaiues of Nu number result from pure conduc- 
Fig. 8 that there are two critical limits for Da number tion. 
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Fig. 7. El%% of substrate thickness on the fully-developed Nusselt number at steady-state conditions for 
different Forchheimer numbers. Da = 0.01. 

Figure 9 shows the axial variation in the steady the increase in the total thermal capacity of the 
s&ate time r,, w.hich is the time required to attain domain that results from the increase in the solid 
steady state thermal behavior at certain location, for matrix mass. It is important to note here that the 
different porous substrate thicknesses. As shown from increase in the porous substrate thickness or the 
this figure, locations far away from the entrance need reduction in the solid matrix void ratio has no effect 
larger time to attain the steady state thermal behavior on the volumetric flow rate within the channel. This 
due to their low Nu numbers. Also, it is clear that is due to imposing the continuity condition which 
increasing the po:rous substrate thickness from N1 = 1 ensures that the volumetric flow rate within the chan- 
(or N, = 0.9) to X1 = 0.5, increases 7,. This is due to nel is constant. The increase in ‘c, occurs in spite of 



354 

ii 
3.0 

. 
b z 2.5 

2 3 2.0 

2 1.5 

3 
g 1.0 
T 
: 
E 0.5 
= 
.? 

M. K. ALKAM and M. A. AL-NIMR 

- Nl=O.l 
- - - - - N,4)2 

. . . . . . . . , Nl=O.3 
-.-.*Nl=O.4 
_..-..a N1=0.5 
- Nl=0.6 
. . . . _ ..-. N,=O.7 
. . . . . . . Nl=O.8 
-.-.-.-.. Nl=O.9 

1.4 

g i- 1.2 

g IO ‘= . 
s (II 
’ 6 0.8 
iii 
; 0.6 
u 
.g 0.4 
:: 
“E a 0.2 

0.0 

IE-9 IE-8 IE-7 lE-6 IE-5 lE-4 IE-3 IE-2 IE-1 lE+O lE+l 
Da 

Fig. 8. Effect of Da number on the fullv develoned Nusselt number at steadv-state conditions for different 
sibstratethicknesses. A = 1 .O. 

. . . . . _._._ . . . . . . -.-.----- 

11 I I I1 I I1, I I I Ia, I I 1, 1, I, t 1 j I I, 

2 4 6 8 10 12 14 16 18 20 
Dimensionless axial coordinate, Z 

Fig. 9. Effect of substrate thickness on the axial variation of the steady-state time. Da = 0.01, A = 1.0. 

the improvement in Nu number which resulted from 
increasing the porous substrate thickness. The small 
enhancement in the heat absorbed from the wall, due 
to the improvement in Nu number is overcome by the 
significant increase in the total thermal capacity of the 
system which is proportional to N:. Further increase 
in the porous substrate thickness (from N, = 0.5 to 
N, = 0) leads to a significant reduction in r,,. Increas- 
ing the substrate thickness in this range brings insig- 
nificant increase in the system thermal capacity (since 

the thermal capacity is proportional to N:) and as a 
result, the small improvement in Nu number over- 
comes the insignificant increase in the thermal 
capacity of the system resulting from increasing the 
porous substrate thickness. 

The effect of Da number on the axial variation in 
r,, is shown in Fig. 10. As shown in this figure, increas- 
ing Da number leads to significant reduction in 7,. 

The Darcy number may be increased by using porous 
substrate of large permeability. The permeability of a 



Transient non-Darcian forced convection flow 355 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

----* DplE.6 

- * - * 3 DaalE.5 

-..-..-__... Da=,E_4 

.._._._._ Da=,E_3 

. . Dal, E-2 

. . ..__.. Da=,E_, 

- Da=1 EO 

0 2 4 6 6 10 12 14 16 16 20 

Dimensionless axial coordinate, 2 
Fig. 10. Effect of Da number on the axial variation of the steady-state time. Nl = 0.5, A = 1.0. 

i 

0 2 4 6 8 10 12 14 16 18 20 

Dimensionless axial coordinate, Z 
Fig. 11. E.&t of Forchheimer number on the axial variation of the steady-state time Nl = 0.5, Da = 0.01. 

given porous d.omain is a strong function of its 
porosity and it increases by increasing the void ratio 
of the porous domain. Light porous domains (of large 
void ratio) have low thermal capacity which in turn 
have small r,,. Also, it is clear from Fig. 10 that large 
Da numbers have insignificant effect on r,,. In the 
range of large Da numbers, the small reduction in the 
void ratio, which leads to a small increase in the system 
thermal capacity, is overcome by the improvement in 
the Nu number. 

Figure 11 shows the effect of the microscopic iner- 
tial term (Forchheimer term) on the axial variation of 
r,. As A increases, the steady-state time increases. The 
coefficient of the microscopic inertial term may be 

increased by using solid matrix of low permeability. 
Such a matrix has small void ratio. As the void ratio 
decreases, the density of the solid matrix increases, 
and as a result, its thermal capacity increases, which 
in turn increases r,,. 

CONCLUSIONS 

Numerical solutions are presented for the problem 
of transient developing forced convection flow in cir- 
cular channels partially filled with porous substrates. 
Including the macroscopic inertial term, the Brink- 
man-Forchheimer-extended Darcy model is used to 
model the flow inside the porous domain. The effects 



356 M. K. ALKAM and M. A. AL-NIMR 

of different parameters regarding the geometry, the 
solid matrix, and the fluid on the hydrodynamic and 
thermal behavior are investigated. 

It is concluded that porous substrates may improve 
Nusselt number up to eight times. The effect of the 
microscopic inertial term, A, on Nu number is found 
to be insignificant. On the other hand, large values 
of Da numbers have significant effects on the fully 
developed Nu number and especially for substrates of 
large thicknesses. Also, it is found that increasing the 
substrate thickness increases the steady-state time up 
to a certain limit and then it decreases for further 
increase in the substrate thickness. Increasing the For- 
chheimer coefficient and decreasing Darcy number 
increase the steady-state time. 
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